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Abstract—This paper considers linear multivariable systems with physical parameters varying
from their known nominal values in an arbitrary and nonstationary manner. The plant is
subjected to polyharmonic external disturbances containing an arbitrary number of unknown
frequencies with unknown amplitudes having a bounded sum. The problem is to design a
controller that robustly stabilizes the closed loop system and ensures desired errors for the
controlled variables of the plant with nominal parameters in the steady-state mode. The system
equations of the original problem are represented in the (W, Λ, K)-form; for this form, the
standard H∞ optimization problem is stated and solved. The desired accuracy of the system is
achieved by analytically assigning the weight matrix of the controlled variables. The controller
design method is illustrated by an example of solving a well-known benchmark problem.
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1. INTRODUCTION

Since the mid-1980s, the problem of robust stability analysis and robust stabilization has been
receiving the close attention of researchers; see numerous references to the publications of this
period, e.g., in [1–4]. These monographs presented in detail the known methods and approaches
to solving the corresponding problems. Let us emphasize the following fundamental features of
popular analysis and design methods of modern control theory:

—Well-known techniques, namely, H2, H∞, and l1 optimization, µ-synthesis, and modal control
(pole placement), may result in systems with very low robustness, i.e., unacceptably small stability
margins (phase and gain margins) at the physical input or output of the plant.

—The controller’s order may be much higher than that of the physical plant.

—Often only state-feedback controllers are designed, without loops by the measured physical
output of the plant.

—The state equations (and the transfer matrix) are secondary descriptions, and their coefficients
often have no physical meaning.

It is natural to consider equations in physical variables (based on the laws of mechanics and elec-
trodynamics), as they have coefficients with clear physical interpretations (mass, moment of inertia,
capacitance, inductance, resistance, etc.). The transition from the original equations in physical
variables to state equations or transfer matrices mixes and multiplies the varying parameters. This
strongly increases the conservatism of analysis and design results.
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ROBUST CONTROLLER DESIGN FOR MULTIVARIABLE SYSTEMS 563

This paper deals with the plant’s equations in physical variables. The approach proposed below
is based on the (W,Λ)- and (W,Λ,K)-forms of equations introduced previously in [5–8]. The circle
criterion of absolute stability [9] and the radius of stability margins [10] are adopted to show that
the results of the cited works remain valid for the nonstationary variations of the plant’s physical
parameters from the nominal ones within the same bounds. This fact is crucial from both theoretical
and engineering points of view.

In practice, real dynamical systems are subject to unmeasured external disturbances; in the
mathematical theory of automatic control, they are considered bounded in some norm [11].
Therefore, the problem is to ensure admissible deviations of the plant’s controlled variables from
zero. Many studies have been devoted to the attenuation of external disturbances; for example,
see [11, 12]. In this paper, unmeasured external disturbances are polyharmonic functions with an
unknown (infinite) number of frequencies and unknown harmonic amplitudes whose sum is bounded
by a given number, as in [10]. In the special case of multiple frequencies, these disturbances cover
the entire class of physically possible disturbances in engineering practice: they are continuous
and have piecewise continuous time derivatives and can be therefore represented by absolutely
convergent Fourier series [10].

Thus, below we consider the problem of designing an output-feedback controller that robustly
stabilizes the closed loop system under nonstationary variations of the plant’s physical parameters
from their nominal values (on the one hand) and ensures given deviations of the controlled variables
from zero under the external disturbances of the class mentioned above (on the other hand). In
a certain sense, this problem can be treated as the design of linear parameter-varying (LPV) sys-
tems [13–16], but, within this research line, the issues of given accuracy are not considered and the
proof of stability involves Lyapunov’s second method. Such an approach is less effective compared
to the frequency criteria used below, due to the well-known difficulties in choosing an appropriate
Lyapunov function. In addition, the structure of the (W,Λ,K)-form allows directly operating the
loops of the varying parameters. As a result, the robust stabilization problem (controller design
ensuring the required radius of stability margins in the loops of the varying physical parameters)
can be solved within necessary and sufficient conditions for the radius of stability margins. This
is the main advantage of the current robust controller design approach compared to all methods
known in the literature.

The resulting problem is reduced to the standard H∞ optimization one, and a given accuracy is
achieved by assigning an appropriate diagonal weight matrix for the plant’s variables; the elements
of this matrix are assigned using analytically derived formulas, similar to [10]. Note that the
controller’s order does not exceed that of the original physical plant.

The proposed approach was implemented in MATLAB based on the Robust Control Toolbox [17]
and uses the technique of linear matrix inequalities (LMIs); see [18]. An illustrative example of
the controller design for the well-known benchmark problem [5–8, 19–22] is given. This paper is an
extended version of the results presented in [9, 20].

2. PRELIMINARIES

2.1. Description of the Plant and Controller

Consider a plant in physical variables described by the following equations:

L1(p)z̃(t) = L2(p)u(t) + L3(p)f(t),

y = Nz̃(t),
(1)

where z̃(t) ∈ Rl is the vector of physical variables of the plant (it contains coordinates, velocities,
accelerations, currents, voltages, etc.); u(t) ∈ Rm is the vector of control inputs; y ∈ Rm2 is the
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564 CHESTNOV, SHATOV

vector of measured and, simultaneously, controlled variables; f(t) ∈ Rm3 is the vector of unknown
external disturbances described below. In addition, the matrix N is a known real matrix of dimen-
sions [m2 × l], and L1(p), L2(p), and L3(p) are polynomial matrices of dimensions [l × l], [l ×m],
and [l ×m3], respectively:

L1(p) =
α1
∑

i=0

L
(i)
1 pi, L2(p) =

α2
∑

j=0

L
(j)
2 pj, L3(p) =

α3
∑

k=0

L
(k)
3 pk,

where L
(i)
1 , L

(j)
2 , and L

(k)
3 are known real matrices of compatible dimensions; α1, α2, and α3 are

known numbers (α2, α3 < α1), and p = d/dt denotes the differentiation operator. By assumption,
the plant (1) is stabilizable and detectable.

Let each component of the disturbance vector fi(t), i = 1,m3, be a bounded polyharmonic
function of the form

fi(t) =
∞
∑

k=1

fik sin(ωkt+ φik), i = 1,m3, (2)

where fik > 0, φik, and ωk, i = 1,m3, k = 1,∞, are the unknown amplitudes, phases, and frequen-
cies of the disturbance, respectively. Suppose also that for each component, the amplitudes fik
have a bounded sum:

∞
∑

k=1

fik 6 f∗
i , i = 1,m3, (3)

where f∗
i are given numbers.

In contrast to [6, 7], where the external disturbance was assumed to be bounded in the root-
mean-square sense, the disturbances considered here may have an arbitrary number of harmonics
with bounded absolute values.

By assumption, there exists a stabilizing controller for the plant (1) with nominal parameters:

u(t) = K(p)y(t), (4)

where K(p) is the transfer matrix of the controller containing proper transfer functions.

2.2. Robust Analysis

Suppose that the matrices L
(i)
1 , i = 0, α1, and L

(j)
2 , j = 0, α2, of the plant (1) contain n elements

varying their values from known nominal ones λ0
1, . . . , λ

0
n. These variations can be described by

functions of time
λi(t) = λ0

i +△λi(t), i = 1, n,

where △λi(t) is the deviation of the ith element of the plant’s matrix from its nominal value such
that λi(t) ∈ [λmin

i , λmax
i ], and the interval bounds λmin

i and λmax
i are unknown.

System (1), (4) is asymptotically stable under the nominal values λ0
i , i = 1, n, of the varying

parameters λi(t).

Problem 1. It is required to find admissible bounds λmin
i , λmax

i , i = 1, n, for which system (1), (4)
is asymptotically stable.

The canonical (W,Λ,K)-form [5, 8, 9] is a special representation for the equations of sys-
tem (1), (4):

ỹ = W11ũ+W12u, ũ = Λỹ,

y = W21ũ+W22u, u = Ky,
(5)
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where Wij(p), i, j = 1, 2, are transfer functions not containing the varying parameters λi(t); the
signals ũ(t) and ỹ(t) are functions from Rn, called the “fictitious” inputs and outputs, respectively,
like the corresponding control loop; Λ = diag[λ1, . . . , λn] is a diagonal matrix containing only the
varying parameters; the control u(t) and output y(t) vectors have been described above.

As was shown in [6], the closed loop system (1), (4) can always be represented in the equivalent
(W,Λ,K)-form.

System (5) with open loops of the inputs ũ has the transfer matrix

W (p) = −Λ[W11 +W12K(I −W22K)−1W21] = −ΛW̃ (p), (6)

where I is an identity matrix of dimensions (m2 ×m2).

An important feature of the transfer matrix (6) is that the varying parameters are contained
only in the diagonal gain matrix Λ. Therefore, the circle criterion can be used to investigate the
robust properties of the closed loop system.

Following the circle criterion, we consider the nonlinear control system [23]

σ(t) = −W (p)ξ(t), ξ(t) = ϕ[σ(t), t], (7)

where W (p) is the linear part of the system (in the case under study, it represents the transfer ma-
trix (6) of dimensions [n× n]; ϕ(σ, t) = [ϕ1(σ1, t), . . . , ϕn(σn, t)]

T is the vector of nonlinear elements
(generally, nonstationary) whose characteristics satisfy the inequalities

αi 6
ϕi(σi, t)

σi
6 βi, ϕi(0, t) = 0, i = 1, n, (8)

where αi < 1 and βi > 1 determine the boundaries of the sectoral nonlinearity restricting the char-
acteristic of the ith nonlinearity. System (7) with ξ(t) = σ(t) (no nonlinearity) is asymptotically
stable due to the controller design method in the case λi = λ0

i .

With the current notations, we modify the circle criterion [9] as follows.

Theorem 1. Let the transfer matrix of the linear part of the system satisfy the frequency matrix
inequality

[I +W (−jω)]T [I +W (jω)] > R2, ω ∈ [0,∞), (9)

where R = diag[r1, . . . , rn] is a diagonal matrix with elements 0 < ri 6 1, i = 1, n. Then system (7)
is absolutely stable under any nonlinearities from the class (8) such that

αi =
1

1 + ri
; βi =

1

1− ri
; i = 1, n. (10)

Theorem 1 remains valid when replacing the nonlinear elements (8) with the linear nonstationary
ones ϕi[σ(t), t] = li(t)σi(t), i = 1, n :

σ(t) = −W (p)ξ(t), ξ(t) = L(t)σ(t), (11)

where L(t) = diag[l1(t), . . . , lm(t)] is a diagonal matrix of nonstationary gains whose nominal values
equal one. (In this case, system (11) is asymptotically stable for λi = λ0

i , i = 1, n.)

For this case, Theorem 1 has an important consequence.

Corollary 1. Let the transfer function W (p) in (11), taken from (6), satisfy the frequency matrix
inequality (9). Then system (11) is asymptotically stable in the large for any nonstationary gains
within the bounds

1

1 + ri
6 li(t) 6

1

1− ri
, i = 1, n. (12)

In contrast to [6, 7], these bounds are valid for the nonstationary case.
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566 CHESTNOV, SHATOV

Fig. 1. The canonical (W, Λ)-form with nonstationary coefficients.

Problem 1 can be solved for an arbitrary set of physical parameters using the canonical form (5).
The closed loop system (5) with the parameters λi = λ0

i , i = 1, n, as before, is asymptotically stable
by the controller design (4). By Corollary 1, in each control loop corresponding to ũi, it is possible to
add nonstationary gains varying their values independently and arbitrarily within the bounds (12)
so that the system will preserve its stability. The admissible bounds of these gains, li(t), i = 1, n,
can be easily recalculated into the admissible bounds of the nonstationary physical parameters of
the system. Figure 1 shows an explanatory block diagram in which W̃ is the same transfer matrix
as in (6) and Λ0 = diag[λ0

1, . . . , λ
0
n] is a diagonal matrix containing the nominal values of the varying

parameters.

The robust stability criterion yielding the solution of Problem 1 was formulated in [9].

Theorem 2. Let the transfer matrix (6) satisfy the frequency matrix inequality (9). Then the
system will preserve its stability under the following admissible bounds of the nonstationary inde-
pendent variations of the parameters λi(t), i = 1, n :

λ0
i

1 + ri
6 λi(t) 6

λ0
i

1− ri
, i = 1, n, (13)

where λ0
i > 0, i = 1, n, are known nominal values of the varying parameters.

The stationary bounds obtained in [5–7] involve the same (common) radius of stability margins.
In contrast, the nonstationary bounds (13) of the varying parameters have the intervals determined
by the individual radii of stability margins; see Theorem 4.

The bounds (13) are obviously valid also for the case of stationary variations of the parameters
under study.

3. PROBLEM STATEMENT

Let us formulate two robust controller design problems: in the first, the external disturbances
are absent (the stabilization problem); in the second, their effect is considered (the attenuation
problem of external disturbances).

Problem 2 (robust stabilization). For the plant (1) it is required to find a controller (4) that will
asymptotically stabilize the closed loop system (1), (4) under all nonstationary variations of the
plant’s physical parameters from their nominal values within given intervals:

λmin
i < λi(t) < λmax

i , i = 1, n,

where λmin
i , λmax

i , i = 1, n, are desired bounds.

The following problem includes external disturbances f(t) from the class (2), (3).

The effect of such disturbances is considered by introducing system accuracy requirements in
the form of steady-state value constraints on the errors of the controlled variables:

yi,st = lim
t→∞

sup |yi(t)|, i = 1,m2.
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Fig. 2. The canonical (W, Λ, K)-form for Problem 2.

Problem 3 (the robust attenuation of external disturbances). For the plant (1) it is required
to find a controller (4) that will asymptotically stabilize the closed loop system (1), (4) under all
nonstationary variations of the plant’s physical parameters from their nominal values within given
intervals:

λmin
i < λi(t) < λmax

i , i = 1, n,

and will satisfy the accuracy requirements under unknown external disturbances from the
class (2), (3) under the nominal values of the physical parameters:

yi,st < γy∗i , i = 1,m2, (14)

where y∗i > 0, i = 1,m2, are given numbers and γ > 0 is a given or minimized number.

4. SOLUTION OF THE PROBLEMS BASED ON H∞ OPTIMIZATION

The solution of both problems is based on the technique of H∞ optimization. In the standard
formulation, it can be written as

‖Tzw‖∞ < γ, z = Tzw(p)w, (15)

where Tzw(p) is the transfer matrix of the closed loop system relating the extended input w to the
extended output z and γ is a given or minimized number.

To apply this technique, we have to construct appropriate vectors w and z and matrix Tzw(p)
so that the solution of the corresponding H∞ problem (15) also be the solution of the original
Problems 2 and 3.

Problem (15) can be solved numerically with suitable standard software. For example, in this
paper, we use Robust Control Toolbox of MATLAB: the H∞ problems considered here may be
singular and, consequently, require application of the LMI-based approach [24].

4.1. Solution of Problem 2

For Problem 2, the extended plant’s equations have the form

ỹ = W11(p)z0 +W12(p)u, ũ = Λ0ỹ,

y = W21(p)z0 +W22(p)u, u = K(p)y,

z = R0z0, z0 = ũ+ w1, R0 = diag[r01 , r
0
2, . . . , r

0
n],

(16)

where w1 is the plant’s fictitious input to make the closed loop system robust, 0 < r0i 6 1, i = 1, n,
are the desired values of the elements r0i in the matrix R in (9). Figure 2 shows the block diagram
of the (W,Λ,K)-form for this problem.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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Im w (ji !)

Re w (ji !)ri

-1

Fig. 3. Theorem 4 illustrated: ri is the radius of the stability margins for the ith fictitious input ũi.

The corresponding extended input and output vectors and transfer matrix in (15) are written
as

w = w1, z = z, Tzw = R0Tz0w1
, (17)

where Tz0w1
is the transfer matrix of the closed loop system relating the vectors w1 and z0.

The solution of problem (15) for system (1), (4) possesses the following properties.

Theorem 3. Let a controller K(p) be found by solving the corresponding problem (15)–(17). It
will stabilize system (1), (4) if

λ0
i

1 + ri
6 λi(t) 6

λ0
i

1− ri
, λ0

i > 0, i = 1, n,

where ri = r0i /γ, i = 1, n, r0i are the given values of the elements of the diagonal matrix R0, and γ
is the value realized when solving problem (15).

The proofs of this and subsequent assertions are provided in the Appendix.

Now we describe the frequency properties of the designed systems. Let wi(p) be the transfer
function of the open loop system (5) relative to the ith fictitious input ũi (i.e., the ith varying
parameter λi). Then the following result is true.

Theorem 4. Assume that the frequency matrix inequality (9) holds. Then the Nyquist plot of
system (5) with an open loop of the ith fictitious input ũi does not touch the circle of radius ri
centered at the critical point (−1, j0) on the complex plane wi(jω).

Theorem 4 gives a physically important interpretation of the frequency matrix inequality (9),
see Fig. 3. That is, the diagonal elements of the matrix R = R0/γ determine the radius ri of the
stability margins of the system with an open loop of the ith input ũi. In addition, the parameter λi

is the factor of the transfer function wi(p), and the designer-specified diagonal elements r0i of the
matrix R0 determine the desired radii of stability margins for the ith input ũi.

4.2. Solution of Problem 3

Problem 3 is also solved using the standard H∞ problem (15) in which the extended plant’s
equations are described similar to [6, 7]:

ỹ = W11(p)z1 +W12(p)u+W13(p)f, ũ = Λ0ỹ,

y = W21(p)z1 +W22(p)u+W23(p)f, u = K(p)y,

z1 = R0(ũ+ w1), z2 = Q1/2y,

(18)
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Fig. 4. The canonical (W, Λ, K)-form for Problem 3.

where Q = diag[q1, . . . , qm2
] is a weight matrix with elements qi > 0, i = 1,m2, assigned to satisfy

the system accuracy requirements (14). Figure 4 shows the block diagram of the (W,Λ,K)-form
for this problem.

In view of the block diagram in Fig. 4 and the corresponding equations (18), we obtain the
vectors

wT = [wT
1 fT ], zT = [zT1 zT2 ] = [(wT

1 + ũT )R0 yTQ1/2]

and the following closed-loop system matrix Tzw :

z =

[

z1
z2

]

= Tzw(p)w =

[

R0Tz0w1
R0Tz0f

Q1/2Tyw1
Q1/2Tyf

]

×

[

w1

f

]

, (19)

where Tz0w1
, Tz0f , Tyw1

, and Tyf are the transfer matrices of the closed loop system relating w1 to
z0, f to z0, w1 to y, and f to y, respectively.

Theorem 5. Let problem (15), (19) be solved with the elements of the diagonal matrix Q assigned
by

qi =





m3
∑

j=1

f∗
j





2

/(y∗i )
2, i = 1,m2.

Then the controller K(p) asymptotically stabilizes system (1), (4) and ensures the steady-state
errors within the intervals

λ0
i

1 + ri
6 λi(t) 6

λ0
i

1− ri
, λ0

i > 0, i = 1, n,

yj,st < γy∗j , j = 1,m2,

(20)

where ri, i = 1, n, and γ are the same variables as in Theorem 3 and y∗j > 0, j = 1,m2, are the
desired control errors.

According to the proof of Theorem 5, the closed loop system (1), (4) or (5) preserves stability
under all nonstationary variations of the plant’s physical parameters within the intervals specified
by the first inequality in (20). In addition, the guaranteed ri and desired r0i radii of the stability
margins and the value γ realized when solving problem (15), (19) are related by ri = r0i /γ, i = 1, n.

Note that when assigning the weight matrix Q as prescribed by Theorem 5, the second inequality
in (A.4) (see the Appendix) fulfills the accuracy requirements (the second inequality in (20)) only
under the nominal values of the varying parameters λi = λ0

i , i = 1, n.
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5. EXAMPLE

As an illustrative example, we take the well-known benchmark problem of a two-mass
system [21, 22]. The system consists of two bodies connected by a spring and is described by
the equations

ẋ1 = x3, ẋ2 = x4, ẋ3 = −qx1 + qx2 + u+ f, ẋ4 = qx1 − qx2, y = x2, (21)

where q is the stiffness of the spring, which varies in some unknown interval. The nominal value q
is chosen equal to q0 = 0.8. The external disturbance signal f is applied at the same point as the
control input. Figure 5 shows the structure of the plant (21) closed by the desired controller K(p).

Let us explain the physical motivation for considering the nonstationary values of the spring
stiffness q(t) : Hooke’s linear law is valid only under small deviations from the equilibrium (com-
pressing or stretching the spring). For large deviations from the equilibrium (significant stretchings
or compressions), this law becomes nonlinear, and it can be represented as a linear nonstationary
law with nonstationary variations of the spring stiffness [25].

In Problem 3, it is necessary to provide a given accuracy for the controlled and, simultaneously,
measured variable y of the closed loop system and maximize the stability margins in the fictitious
control loop containing the varying parameter q.

System (21) has been written in the (W,Λ,K)-form (18); for details, see [6, 7]. Therefore, we
proceed directly to formulating the H∞ problem (15) for the particular system under consideration.
Problem (15) is solved using standard MATLAB software based on LMIs. For this purpose, we
represent the plant equations in the generalized state-space form

ẋ = Ax+B1w +B2u; z = C1x+D11w +D12u;

y = C2x+D21w +D22u.

The generalized plant’s matrices are

A =











0 0 1 0
0 0 0 1
−q q 0 0
q −q 0 0











; B1 =











0 0
0 0
1 1
−1 0











;

B2 = [0 0 1 0]T ;

C1 =

[

R0 × (−q q 0 0)

Q1/2 × (0 1 0 0)

]

; D11 =

[

1 0
0 0

]

;

C2 = [0 1 0 0]; D12 = [0 0]T ; D21 = [0 0]; D22 = 0.

The following parameters were used in the numerical experiment: the desired control error
y∗ = 0.5 and the bound f∗ = 1 for the external disturbance. Then Theorem 5 yields the corre-
sponding weight coefficient:

Q = (f∗)2/(y∗)2 = 4, Q1/2 = 2.

The second design parameter (the desired radius of stability margins) was chosen as R0 = 0.9.

Fig. 5. Two-mass-spring system.
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Fig. 6. The Nyquist plot of the open loop system.

The controller design by the hinflmi function of Robust Control Toolbox yields

K(p) = −
1.045 × 1012(p+ 0.5409)(p2 + 0.713p + 1.049)

(p2 + 256.8p + 5.289 × 104)(p2 + 202.9p + 4.86 × 106)
. (22)

The optimal value γ = 1.01895 gives the radius R = R0/γ = 0.883 of stability margins, with which
the system preserves stability under the nonstationary variations of the parameter q (from the
nominal value q0 = 0.8) within the interval

0.425 6 q(t) 6 6.853.

This corresponds to qmin = q0/(1 +R) = 0.425 and qmax = q0/(1−R) = 6.853. The numerical
bounds of the admissible variations of the nonstationary parameter q(t) under which the system
remains stable can be further refined by using Theorem 2, which is based on the circle criterion
(also, see [23]). The true value of the parameter R = r1 in (9) is 0.974; it was found from the
Nyquist plot of the corresponding transfer function of the open loop system (6) for Λ = q0 (Fig. 6).
The bounds obtained from the Nyquist plot are much wider than the guaranteed ones and are

0.406 6 q(t) 6 30.995.

In the case of the stationary uncertainty of the parameter q, we get even wider robust stability
bounds:

0.263 6 q 6 61.297.

These bounds were also obtained from the Nyquist plot (Fig. 6). Here, the point gm1 (gm2) shows
how many times the loop gain can be decreased (increased, respectively) without stability loss.
The varying parameter q is the factor of the transfer function of the open loop, which explains the
derivation of these bounds.

The resulting bounds are much wider than the well-known in the literature. A comparative
analysis of the most successful controller design approaches for the plant (21) was carried out
in [19].

The classical stability margins (the phase and amplitude margins) are found for the open control
loop for the real input u (or output y). In this example, they equal L = 35.4 dB and φmar = 64.5◦.

Figure 7 shows the transient response of the closed loop system (21), (22) under f = 1. Clearly,
the steady-state value yst = 0.434 of the controlled variable satisfies the accuracy requirements
yst < y∗ = 0.5. The realized value of the control error insignificantly differs from the desired one,

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024
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Fig. 7. The transient response of the closed loop system.

Fig. 8. The amplitude-frequency response of the closed loop system.

which indicates a low degree of sufficiency of the design method in terms of this performance
index. Figure 8 presents the amplitude-frequency response of the transfer function relating f to y,
which is a monotonically decreasing curve. Hence, the step external disturbance is the worst for
system (21), (22).

In the example, the disturbance f is applied together with the control input to the first body,
and the accuracy requirements are fulfilled. Note that they will also hold when applying f to the
second body.

6. CONCLUSIONS

This paper has proposed a control design method that can be used in real engineering problems,
as it possesses several advantages:
(a) The practically important class (2), (3) of external disturbances is rather wide: it covers ele-
mentwise bounded functions of time, |fi(t)| 6 f∗

i , i = 1,m3, which are, in particular, continuous
and piecewise differentiable. Hence, they can be represented by an absolutely convergent Fourier
series (2) (if the frequencies are multiples) [10]. (Such disturbances are only physically possible in
engineering practice.)
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(b) The method considers nonstationary deviations of the plant’s physical parameters.
(c) The control design procedure is reduced to solving the standard H∞ optimization problem.
(d) The design method is noniterative, and the resulting controller has an order not exceeding that
of the plant.

At the same time, according to the studies [6, 8, 19], even despite the significant bounds of the
admissible deviations of the physical parameters from the nominal ones (under which the closed
loop system remains stable), the radius of stability margins at the plant’s physical input or output
may be very small, which makes the resulting controller unusable in practice [10]. Therefore, the
challenge is to improve this design method toward the additional consideration of the requirements
for the radius of stability margins at the plant’s physical input or output [8], even though in the
illustrative example, the stability margins at the open loop points have turned out pretty good.

In addition, it is necessary to consider system time response requirements during controller
design, even though in the illustrative example, the performance of the closed loop system (the
settling time) has turned out small enough, tp ≈ 10 s.
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APPENDIX

Proof of Theorem 3. From (15) and (17) it follows that

T T
z0w1

(−jω)R2
0Tz0w1

(jω) < γ2I, ω ∈ [0,∞). (A.1)

Since Tz0w1
= [I +W (jω)]−1 (see [5–7]), we obtain

[I +W (−jω)]T [I +W (jω)] > R2
0/γ

2, ω ∈ [0,∞), (A.2)

which coincides with (9), where R2 = R2
0/γ

2. By Theorem 2, the admissible bounds are the same
as in Theorem 3.

As ω → ∞ condition (A.2) implies I > R0/γ. Hence, the realized value γ satisfies the inequalities

γ > r0i , i = 1, n.

Proof of Theorem 4. Let ti(p) be the transfer function of the closed loop system relating the
ith component of the vector w1 to the ith component of the vector z0. Due to the diagonal structure
of the matrix R0, the transfer function relating w1i to zi is r

0
i ti(p). In turn, the functions ti(p) and

wi(p) have an analog of the classical relation [10]:

ti(p) = 1/[1 + wi(p)].

Thus, the transfer function relating w1i to zi is r0i /[1 + wi(p)]; on the other hand, it represents
the ith diagonal element of the transfer matrix R0Tz0w1

, which satisfies inequality (15) by (17).
Consequently, any of its elements satisfies an analogous condition, and then ‖r0i /[1+wi(p)]‖∞ < γ,
which can be equivalently written as

[1 + wi(−jω)][1 + wi(jω)] > (r0i /γ)
2 = r2i , ω ∈ [0, ∞). (A.3)
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Proof of Theorem 5. Suppose that problem (15) has been solved for the matrix Tzw(p) (19).
Then the corresponding inequalities are valid for each separate block of the transfer matrix. Con-
sider only the diagonal blocks:

‖R0Tz0w1
‖∞ < γ, ‖Q1/2Tyw‖∞ < γ. (A.4)

The first inequality can be represented as (A.1), and the same considerations as in Theorem 3
are applicable here. As a result, the first inequality in (20) holds.

The second block inequality in (A.4) ensures the accuracy requirements (14). It can be equiva-
lently written as

T T
yw(−jω)QTyw(jω) < γ2I.

According to [10], with the latter inequality being true, the steady-state values of the controlled
variables satisfy the inequalities

qiy
2
i,st < γ2





m3
∑

j=1

f∗
j





2

, i = 1,m2, (A.5)

under any disturbance from the class (2), (3).

Let us assign the weights qi, i = 1,m2, as prescribed by Theorem 5 and substitute them
into (A.5). After straightforward transformations, we finally arrive at the desired inequality (14).
Thus, both inequalities in (20) hold, and the proof of this theorem is complete.
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